

ОТБОРОЧНЫЙ ТУР

ХИМИЯ

8 класс

Пишите разборчиво. В работе не должно быть никаких пометок, не относящихся к ответам на вопросы. Если Вы не знаете ответа, ставьте прочерк.

Максимальное количество баллов-100.

Задание 1 (25 баллов). В результате прокаливания 24,6 г кристаллогидрата сульфата двухвалентного металла масса безводной соли составила 12,0 г. Установлено, что в безводной соли массовая доля металла составляет 20%. Определите формулу кристаллогидрата.

Задание 2 (25 баллов). Смесь оксида цинка и оксида меди (II) массой 16,1 г обработали 146 г 10%-ного раствора соляной кислоты. После завершения реакции к полученной смеси добавили 80 г 30%-ного раствора гидроксида натрия. Определите массовые доли веществ в конечном растворе.

Задание 3 (25 баллов). Массовая доля натрия в минерале составляет 15,5%, кальция — 13,5%, углерода — 8,1%, водорода — 3,4%, кислорода — 59,5%. Определите простейшую формулу основного компонента минерала, ответ подтвердите расчетами, приведите название этого минерала.

Задание 4 (25 баллов). Реакция разложения перекиси водорода в водном растворе при 20 °C завершается за 40 минут. Температурный коэффициент реакции равен 3. Рассчитайте время, необходимое для завершения реакции при 50 °C, предполагая, что объем раствора и начальная концентрация перекиси водорода остаются неизменными.

ОТБОРОЧНЫЙ ТУР

ХИМИЯ

9 класс

Пишите разборчиво. В работе не должно быть никаких пометок, не относящихся к ответам на вопросы. Если Вы не знаете ответа, ставьте прочерк.

Максимальное количество баллов-100.

Задание 1 (25 баллов). В результате прокаливания 24,6 г кристаллогидрата сульфата двухвалентного металла масса безводной соли составила 12,0 г. Установлено, что в безводной соли массовая доля металла составляет 20%. Определите формулу кристаллогидрата.

Задание 2 (25 баллов). Смесь оксида цинка и оксида меди (II) массой 16,1 г обработали 146 г 10%-ного раствора соляной кислоты. После завершения реакции к полученной смеси добавили 80 г 30%-ного раствора гидроксида натрия. Определите массовые доли веществ в конечном растворе.

Задание 3 (25 баллов). Массовая доля натрия в минерале составляет 15,5%, кальция — 13,5%, углерода — 8,1%, водорода — 3,4%, кислорода — 59,5%. Определите простейшую формулу основного компонента минерала, ответ подтвердите расчетами, приведите название этого минерала.

Задание 4 (25 баллов). Реакция разложения перекиси водорода в водном растворе при 20 °C завершается за 40 минут. Температурный коэффициент реакции равен 3. Рассчитайте время, необходимое для завершения реакции при 50 °C, предполагая, что объем раствора и начальная концентрация перекиси водорода остаются неизменными.

ОТБОРОЧНЫЙ ТУР

ХИМИЯ

10 класс

Пишите разборчиво. В работе не должно быть никаких пометок, не относящихся к ответам на вопросы. Если Вы не знаете ответа, ставьте прочерк.

Максимальное количество баллов-100.

Задание 1 (25 баллов). Воздух, загрязненный сероводородом, пропускали через раствор NaOH, затем к раствору добавили избыток йодной воды. Выпавший осадок серы массой 0,32 г. Объем пропущенного воздуха - 180 м³. Рассчитайте концентрацию H₂S в мг/м³ и сравните с ПДК (0,008 мг/м³).

Задание 2 (25 баллов). Рассчитайте объем СО (при 25°С и 98 кПа) для получения 500 г муравьиной кислоты по реакции:

с последующей обработкой H₂SO₄.

Также рассчитайте объем газа при дегидратации 230 г HCOOH (120°C, 95 кПа).

Задание 3 (25 баллов). К 35 мл 15% раствора HNO₃ ($\rho = 1,08$ г/мл) добавили 2,34 г Al(OH)₃. Определите среду раствора и массовую долю соли в конечном растворе.

Задание 4 (25 баллов). При сжигании 2,64 г органического соединения получено 2,24 л CO₂, 1,44 г H₂O и 0,896 л SO₂ (н.у.). Плотность паров по воздуху - 4,55. При гидролизе с NaOH дает две соли, одна из которых с HCl выделяет H₂S, а другая при электролизе дает O₂. Определите формулу и рассчитайте объем газа при гидролизе 15 г вещества (27°C, 100 кПа).

ОТБОРОЧНЫЙ ТУР

химия

11 класс

Пишите разборчиво. В работе не должно быть никаких пометок, не относящихся к ответам на вопросы. Если Вы не знаете ответа, ставьте прочерк.

Максимальное количество баллов-100.

Задание 1 (**25 баллов**). При электролизе 500 г 20%-ного раствора AgNO₃ выделилось 30,0 л газа (27°C, 100 кПа). Рассчитайте массу осадка после охлаждения, количество электричества и объем газа при н.у.

Задание 2 (25 баллов). Для реакции

$$2N_2O \rightarrow 2N_2 + O_2$$
:

Константа скорости при 900К (k(900K)) = 0.76 л/(моль · c),

Константа скорости при 1000K (k(1000K)) = 18,0 л/(моль·с).

Рассчитайте энергию активации, k(950K), время разложения 90% N₂O при $[N_2O]_0 = 0,5$ моль/л, и как изменится скорость при увеличении давления в 3 раза.

Задание 3 (25 баллов). Для реакции

$$CO + H_2O \rightleftarrows CO_2 + H_2$$
:

Константа равновесия (Kp(700K)) = 9,0,

 $\Delta H = -41,2 \text{ кДж/моль}.$

Рассчитайте степень превращения СО при P=2 атм и соотношении $CO:H_2O=1:3$, температуру для $\alpha=90\%$, влияние температуры на равновесие и Kp(800K).

Задание 4 (25 баллов). При растворении 2,32 г FeSO₄·хH₂O в избытке KCN получили 3,68 г комплексной соли. Установите формулы исходного кристаллогидрата и полученного комплексного соединения, рассчитайте объем подкисленного 0,1М КМпО₄ для окисления железа после разрушения комплекса.